<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 28783411
In past decades, morphologic, molecular, and cellular mechanisms that govern tooth development have been extensively studied. These studies demonstrated that the same signaling pathways regulate development of the primary and successional teeth. Mutations of these pathways lead to abnormalities in tooth development and number, including aberrant tooth shape, tooth agenesis, and formation of extra teeth. Here, we summarize the current knowledge on the development of the primary and successional teeth in animal models and describe some of the common tooth abnormalities in humans.
Tooth, Supernumerary, Tooth Abnormalities, Morphogenesis, Animals, Humans, Odontogenesis, Anodontia, Signal Transduction, Transcription Factors
Tooth, Supernumerary, Tooth Abnormalities, Morphogenesis, Animals, Humans, Odontogenesis, Anodontia, Signal Transduction, Transcription Factors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |