
pmid: 19734461
Tractional forces on the temporomandibular joint (TMJ) disc predispose tissue fatigue. This study tested the hypotheses that tractional forces: (1) increased with stress-field velocity ( V) and aspect ratio ( AR, contact area diameter/cartilage thickness), and compressive strain (ε); and (2) varied depending on cartilage thickness. Porcine TMJ discs (n = 187) received a 10-N vertical static load via an acrylic indenter for 1, 5, 10, 30, or 60 sec, followed by movement. Physical data were recorded and analyzed by quadratic regression relations and a likelihood ratio test. Results showed non-linear increases in tractional forces that were positively correlated with increased V, AR, and ε when the stress-field moved onto relatively thicker (R2 = 0.83) and thinner cartilage (R2 = 0.86). When V was > 27 mm/sec and AR·ε3, was > 0.09, tractional forces were significantly higher (≤ 12% of peak) when the stress-field moved onto thicker cartilage. Stress-field dynamic mechanics and cartilage thickness significantly affected TMJ disc tractional forces.
Cartilage, Articular, Rotation, Swine, Traction, Temporomandibular Joint Disc, Animals, Stress, Mechanical, Algorithms, Biomechanical Phenomena
Cartilage, Articular, Rotation, Swine, Traction, Temporomandibular Joint Disc, Animals, Stress, Mechanical, Algorithms, Biomechanical Phenomena
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
