
doi: 10.1176/jnp.3.4.436
pmid: 1821267
Previous articles in this series have described how receiver operating characteristic (ROC) graphs provide comprehensive graphic representations of the diagnostic performance of non-binary tests and have explained how one constructs "trapezoidal" ROC graphs in which discrete cutoff points are plotted and connected with line segments. In this article, we describe a set of mathematical assumptions that permit the generation of a continuous, smooth ROC curve for a given diagnostic test. These assumptions permit us to characterize a test's performance using a small number of parameters and also to explore properties of diagnostic tests. In this article, we describe a set of mathematical assumptions that can be used to link receiver operating characteristic (ROC) curves to the underlying distribution of values of the diagnostic variable being measured. We will illustrate these assumptions using a diagnostic test that distinguishes alcohol abusers from normal consumers of alcohol and abstainers.
Alcoholism, Liver Function Tests, ROC Curve, Predictive Value of Tests, Normal Distribution, Transferrin, Humans
Alcoholism, Liver Function Tests, ROC Curve, Predictive Value of Tests, Normal Distribution, Transferrin, Humans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
