<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractData assimilation leads naturally to a Bayesian formulation in which the posterior probability distribution of the system state, given all the observations on a time window of interest, plays a central conceptual role. The aim of this paper is to use this Bayesian posterior probability distribution as a gold standard against which to evaluate various commonly used data assimilation algorithms.A key aspect of geophysical data assimilation is the high dimensionality and limited predictability of the computational model. This paper examines the two-dimensional Navier–Stokes equations in a periodic geometry, which has these features and yet is tractable for explicit and accurate computation of the posterior distribution by state-of-the-art statistical sampling techniques. The commonly used algorithms that are evaluated, as quantified by the relative error in reproducing moments of the posterior, are four-dimensional variational data assimilation (4DVAR) and a variety of sequential filtering approximations based on three-dimensional variational data assimilation (3DVAR) and on extended and ensemble Kalman filters.The primary conclusions are that, under the assumption of a well-defined posterior probability distribution, (i) with appropriate parameter choices, approximate filters can perform well in reproducing the mean of the desired probability distribution, (ii) they do not perform as well in reproducing the covariance, and (iii) the error is compounded by the need to modify the covariance, in order to induce stability. Thus, filters can be a useful tool in predicting mean behavior but should be viewed with caution as predictors of uncertainty. These conclusions are intrinsic to the algorithms when assumptions underlying them are not valid and will not change if the model complexity is increased.
Probability (math.PR), FOS: Physical sciences, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Physics - Atmospheric and Oceanic Physics, Optimization and Control (math.OC), Physics - Data Analysis, Statistics and Probability, Atmospheric and Oceanic Physics (physics.ao-ph), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Mathematics - Optimization and Control, Mathematics - Probability, Data Analysis, Statistics and Probability (physics.data-an)
Probability (math.PR), FOS: Physical sciences, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Physics - Atmospheric and Oceanic Physics, Optimization and Control (math.OC), Physics - Data Analysis, Statistics and Probability, Atmospheric and Oceanic Physics (physics.ao-ph), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Mathematics - Optimization and Control, Mathematics - Probability, Data Analysis, Statistics and Probability (physics.data-an)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 91 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |