Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied M...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Meteorology and Climatology
Article
License: implied-oa
Data sources: UnpayWall
Journal of Applied Meteorology and Climatology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving SCIPUFF Dispersion Forecasts with NWP Ensembles

Authors: Jared A. Lee; L. Joel Peltier; Sue Ellen Haupt; John C. Wyngaard; David R. Stauffer; Aijun Deng;

Improving SCIPUFF Dispersion Forecasts with NWP Ensembles

Abstract

Abstract The relationships between atmospheric transport and dispersion (AT&D) plume uncertainty and uncertainties in the transporting wind fields are investigated using the Second-Order Closure, Integrated Puff (SCIPUFF) AT&D model driven by numerical weather prediction (NWP) meteorological fields. Modeled contaminant concentrations for episode 1 of the 1983 Cross-Appalachian Tracer Experiment (CAPTEX-83) are compared with recorded ground-level concentrations of the inert tracer gas C7F14. This study evaluates a Taylor-diffusion-based parameterization of dispersion uncertainty for SCIPUFF that uses Eulerian meteorological ensemble velocity statistics and a Lagrangian integral time scale as input. These values are diagnosed from NWP ensemble data. Individual simulations of the tracer release fail to reproduce some of the monitored surface concentrations of the tracer. The plumes that are predicted using the uncertainty model in SCIPUFF are broader, improving the overlap between the predicted and observed results. Augmenting the meteorological input to SCIPUFF with meteorological ensemble-uncertainty parameters therefore provides both a better estimate of the expected plume location and the relative uncertainties in the predicted concentrations than single deterministic forecasts. These results suggest that this new parameterization of NWP wind field uncertainty for dispersion may provide more sophisticated information that may benefit emergency response and decision making.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
hybrid