<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Out-of-hospital cardiac arrest is associated with a dismal mortality rate and low long-term survival. A large pharmacological knowledge gap exists in identifying drugs that preserve neurological function and increase long-term survival after cardiac arrest. In this issue of the JCI, Li, Zhu, and colleagues report on their engineering of a 20-amino acid cell-permeable peptide (TAT-PHLPP9c) that antagonized the phosphatase PHLPP1 and prevented PHLPP1-mediated dephosphorylation and AKT inactivation. TAT-PHLPP9c administration maintained activated AKT after arrest and led to AKT-mediated beneficial effects on the heart, brain, and metabolism, resulting in increased cardiac output and cerebral blood flow and rescue of ATP levels in affected tissues. TAT-PHLPP9c improved neurological outcomes and increased survival after cardiac arrest in murine and porcine models of cardiac arrest. These findings provide proof of concept that pharmacological targeting of PHLPP1 may be a promising approach to augmenting long-term survival after cardiac arrest.
Mice, Swine, R, Commentary, Medicine, Animals, Heart, Proto-Oncogene Proteins c-akt, Cardiopulmonary Resuscitation, Phosphoric Monoester Hydrolases, Out-of-Hospital Cardiac Arrest
Mice, Swine, R, Commentary, Medicine, Animals, Heart, Proto-Oncogene Proteins c-akt, Cardiopulmonary Resuscitation, Phosphoric Monoester Hydrolases, Out-of-Hospital Cardiac Arrest
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |