Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Clini...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Clinical Investigation
Article . 1995 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

Authors: P, Ping; R, Gelzer-Bell; D A, Roth; D, Kiel; P A, Insel; H K, Hammond;

Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

Abstract

To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling associated with chronic reduction in beta-adrenergic receptor agonist activation were found. First, there was coordinate downregulation of Gi alpha 2 and Gs alpha mRNA and protein expression in the left ventricle; reduced G-protein content was also found in the right atrium. Second, in the left ventricle, there was a twofold increase in beta-adrenergic receptor-dependent stimulation of adenylyl cyclase and a persistent high affinity state of the beta-adrenergic receptor. Finally, there was a reduction in left ventricular beta-adrenergic receptor kinase activity, suggesting a previously unrecognized association between the degree of adrenergic activation and myocardial beta-adrenergic receptor kinase expression. The heart appears to adapt in response to chronic beta-adrenergic receptor antagonist administration in a manner that would be expected to offset reduced agonist stimulation. The mechanisms for achieving this extend beyond beta-adrenergic receptor upregulation and include alterations in G-protein expression, beta-adrenergic receptor-Gs interaction, and myocardial beta-adrenergic receptor kinase activity.

Related Organizations
Keywords

Membranes, Base Sequence, Heart Ventricles, Myocardium, Molecular Sequence Data, Adaptation, Biological, Isoproterenol, Down-Regulation, Heart, Binding, Competitive, Cyclic AMP-Dependent Protein Kinases, Glycopyrrolate, GTP-Binding Proteins, Heart Rate, Receptors, Adrenergic, beta, Animals, Bisoprolol, Heart Atria, RNA, Messenger, Adenylyl Cyclases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 10%
Top 10%
Top 1%
gold