Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computational and Theoretical Nanoscience
Article . 2005 . Peer-reviewed
Data sources: Crossref
Journal of Computational and Theoretical Nanoscience
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel Techniques for Microarray Data Analysis: Probabilistic Principal Surfaces and Competitive Evolution on Data

Authors: AMATO R.; CIARAMELLA A.; DEL MONDO C.; DE VINCO L.; DONALEK C.; LONGO, GIUSEPPE; MIELE, GENNARO; +3 Authors

Novel Techniques for Microarray Data Analysis: Probabilistic Principal Surfaces and Competitive Evolution on Data

Abstract

Microarrays are among the most powerful tools in biological research, but in order to attain its full potentialities, it is imperative to develop techniques capable to effectively exploit the huge quantity of data which they produce. In this paper two machine learning methodologies for microarray data analysis are proposed: (1) Probabilistic Principal Surfaces (PPS), which is a nonlinear latent variable model which offers very appealing visualization and classification abilities and can be effectively employed for clustering purposes. More specifically, the PPS method builds a probability density function of a given data set of patterns, lying in a D dimensional space (with D 3), expressed in terms of a fixed number of latent variables, lying in a Q-dimensional space (Q is usually 2 or 3), which can be used (after a proper manipulation) to visualize, classify and cluster the data; (2) Competitive Evolution on Data (CED) is instead an evolutionary system in which the possible solutions (cluster centroids) compete to conquer the largest possible number of resources (data) and thus partition the input data set in clusters. We discuss the application of both methods to the analysis of microarray data obtained for the yeast genome.

Keywords

Microarray Data; Data Mining; Latent Variable Models

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!