<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Let $G$ be an outerplanar graph with maximum degree $\Delta(G)\ge 3$. We prove that the chromatic number $\chi(G^2)$ of the square of $G$ is at most $\Delta(G)+2$. This confirms a conjecture of Wegner [8] for outerplanar graphs. The upper bound can be further reduced to the optimal value $\Delta(G)+1$ when $\Delta(G)\ge 7$.
outerplanar graph, 05C15, chromatic number, square
outerplanar graph, 05C15, chromatic number, square
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |