Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Academica-earrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evolutionary Computation
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms

Authors: Echegoyen Arruti, Carlos; Mendiburu, Alexander; Santana, Roberto; Lozano, José Antonio;

On the Taxonomy of Optimization Problems Under Estimation of Distribution Algorithms

Abstract

Understanding the relationship between a search algorithm and the space of problems is a fundamental issue in the optimization field. In this paper, we lay the foundations to elaborate taxonomies of problems under estimation of distribution algorithms (EDAs). By using an infinite population model and assuming that the selection operator is based on the rank of the solutions, we group optimization problems according to the behavior of the EDA. Throughout the definition of an equivalence relation between functions it is possible to partition the space of problems in equivalence classes in which the algorithm has the same behavior. We show that only the probabilistic model is able to generate different partitions of the set of possible problems and hence, it predetermines the number of different behaviors that the algorithm can exhibit. As a natural consequence of our definitions, all the objective functions are in the same equivalence class when the algorithm does not impose restrictions to the probabilistic model. The taxonomy of problems, which is also valid for finite populations, is studied in depth for a simple EDA that considers independence among the variables of the problem. We provide the sufficient and necessary condition to decide the equivalence between functions and then we develop the operators to describe and count the members of a class. In addition, we show the intrinsic relation between univariate EDAs and the neighborhood system induced by the Hamming distance by proving that all the functions in the same class have the same number of local optima and that they are in the same ranking positions. Finally, we carry out numerical simulations in order to analyze the different behaviors that the algorithm can exhibit for the functions defined over the search space [Formula: see text].

Country
Spain
Keywords

Taxonomy of functions, Models, Statistical, Factorizations, Neighborhood system, Computational Biology, Equivalence classes, Rank-based selection, Classification, Dynamical systems, Probabilistic models, Model of infinite population, Estimation of distribution algorithms, Algorithms, Software, Probability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
Green