Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Data Intelligencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Data Intelligence
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Data Intelligence
Article
License: CC BY
Data sources: UnpayWall
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Faster Zero-shot Multi-modal Entity Linking via Visual-Linguistic Representation

Authors: Qiushuo Zheng; Hao Wen; Meng Wang; Guilin Qi; Chaoyu Bai;

Faster Zero-shot Multi-modal Entity Linking via Visual-Linguistic Representation

Abstract

Abstract Multi-modal entity linking plays a crucial role in a wide range of knowledge-based modal-fusion tasks, i.e., multi-modal retrieval and multi-modal event extraction. We introduce the new ZEro-shot Multi-modal Entity Linking (ZEMEL) task, the format is similar to multi-modal entity linking, but multi-modal mentions are linked to unseen entities in the knowledge graph, and the purpose of zero-shot setting is to realize robust linking in highly specialized domains. Simultaneously, the inference efficiency of existing models is low when there are many candidate entities. On this account, we propose a novel model that leverages visuallinguistic representation through the co-attentional mechanism to deal with the ZEMEL task, considering the trade-off between performance and efficiency of the model. We also build a dataset named ZEMELD for the new task, which contains multi-modal data resources collected from Wikipedia, and we annotate the entities as ground truth. Extensive experimental results on the dataset show that our proposed model is effective as it significantly improves the precision from 68.93% to 82.62% comparing with baselines in the ZEMEL task.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold