Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational Lingui...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational Linguistics
Article . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational Linguistics
Article . 2024
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Arabic Dialect Identification

Authors: Omar F. Zaidan; Chris Callison-Burch;

Arabic Dialect Identification

Abstract

The written form of the Arabic language, Modern Standard Arabic (MSA), differs in a non-trivial manner from the various spoken regional dialects of Arabic—the true “native languages” of Arabic speakers. Those dialects, in turn, differ quite a bit from each other. However, due to MSA's prevalence in written form, almost all Arabic data sets have predominantly MSA content. In this article, we describe the creation of a novel Arabic resource with dialect annotations. We have created a large monolingual data set rich in dialectal Arabic content called the Arabic On-line Commentary Data set (Zaidan and Callison-Burch 2011). We describe our annotation effort to identify the dialect level (and dialect itself) in each of more than 100,000 sentences from the data set by crowdsourcing the annotation task, and delve into interesting annotator behaviors (like over-identification of one's own dialect). Using this new annotated data set, we consider the task of Arabic dialect identification: Given the word sequence forming an Arabic sentence, determine the variety of Arabic in which it is written. We use the data to train and evaluate automatic classifiers for dialect identification, and establish that classifiers using dialectal data significantly and dramatically outperform baselines that use MSA-only data, achieving near-human classification accuracy. Finally, we apply our classifiers to discover dialectical data from a large Web crawl consisting of 3.5 million pages mined from on-line Arabic newspapers.

Keywords

Computational linguistics. Natural language processing, P98-98.5

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 1%
Top 1%
Top 10%
gold