Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Evolutionary Computa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Evolutionary Computation
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Redundant Representations in Evolutionary Computation

Authors: Rothlauf, Franz; Goldberg, David E.;

Redundant Representations in Evolutionary Computation

Abstract

This paper discusses how the use of redundant representations influences the performance of genetic and evolutionary algorithms. Representations are redundant if the number of genotypes exceeds the number of phenotypes. A distinction is made between synonymously and non-synonymously redundant representations. Representations are synonymously redundant if the genotypes that represent the same phenotype are very similar to each other. Non-synonymously redundant representations do not allow genetic operators to work properly and result in a lower performance of evolutionary search. When using synonymously redundant representations, the performance of selectorecombinative genetic algorithms (GAs) depends on the modification of the initial supply. We have developed theoretical models for synonymously redundant representations that show the necessary population size to solve a problem and the number of generations goes with O(2kr/r), where kr is the order of redundancy and r is the number of genotypic building blocks (BB) that represent the optimal phenotypic BB. As a result, uniformly redundant representations do not change the behavior of GAs. Only by increasing r, which means overrepresenting the optimal solution, does GA performance increase. Therefore, non-uniformly redundant representations can only be used advantageously if a-priori information exists regarding the optimal solution. The validity of the proposed theoretical concepts is illustrated for the binary trivial voting mapping and the real-valued link-biased encoding. Our empirical investigations show that the developed population sizing and time to convergence models allow an accurate prediction of the empirical results.

Country
Germany
Keywords

Population Density, Phenotype, Time Factors, 330, Genotype, Models, Genetic, Computational Biology, Biological Evolution, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    119
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
119
Top 10%
Top 1%
Top 10%
bronze