Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Strokearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stroke
Article
Data sources: UnpayWall
Stroke
Article . 2010 . Peer-reviewed
Data sources: Crossref
Stroke
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neuroprotection in Subarachnoid Hemorrhage

Authors: Brad J. Kolls; Daniel T. Laskowitz;

Neuroprotection in Subarachnoid Hemorrhage

Abstract

Despite advances in aneurysm ablation and the initial management of patients presenting with aneurysmal subarachnoid hemorrhage, delayed cerebral ischemia remains a significant source of morbidity. Traditionally, delayed cerebral ischemia was thought to be a result of vasospasm of the proximal intracranial vessels, and clinical trials have relied largely on radiographic evidence of vasospasm as a surrogate for functional outcome. However, a number of trials have demonstrated a dissociation between angiographic vasospasm and outcome, and more recent data suggest that other mechanisms of injury, such as microvascular dysfunction and complex neuronal-glial interactions, may influence the development of delayed ischemic deficit after aneurysmal subarachnoid hemorrhage. Our evolving understanding of the pathophysiology of delayed cerebral ischemia may offer the opportunity to test new therapeutic strategies in this area and improve clinical trial design.

Related Organizations
Keywords

Neuroprotective Agents, Brain, Humans, Vasospasm, Intracranial, Subarachnoid Hemorrhage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze