Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hypertensionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hypertension
Article
Data sources: UnpayWall
Hypertension
Article . 2012 . Peer-reviewed
Data sources: Crossref
Hypertension
Article . 2012
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phenotyping the Microcirculation

Authors: Bart F. J. Heijnen; Yan-Ping Liu; Jan A. Staessen; Harry A.J. Struijker-Boudier;

Phenotyping the Microcirculation

Abstract

The role of the microcirculation is increasingly being recognized in the pathophysiology of cardiovascular disease.1,2 The microcirculation is a major site of damage in most target organs of cardiovascular disease, such as the heart, brain, and kidney. Both functional and structural alterations in the small arteries, arterioles, and capillaries are the basis of target organ damage. Furthermore, the microcirculation is the major site of control of vascular resistance. This makes it a central player in the etiopathogenesis of diseases characterized by an increased vascular resistance, such as hypertension. Detailed mechanistic studies in both humans and animal models of cardiovascular disease have revealed the nature of microcirculatory dysfunction. Large-scale epidemiological studies in the last 2 decades have identified the associations among deranged microvascular perfusion, structure, target organ damage, and subsequent cardiovascular disease.3 Major technological developments now allow study of the microcirculation both in mechanistic and epidemiological studies. The purpose of this Brief Review is to provide a critical appraisal of these developments and their particular impact on hypertension research. ### Assessment of the Microcirculation The Table gives an overview of the major methods to assess the microcirculation. Intravital microscopy has been used by many groups in experimental models to study microcirculatory (dys)function. It has been the primary technology underlying our present knowledge of microcirculatory function in health and disease. Intravital microscopy is the optical imaging of living organisms. The tissue to be studied is prepared by surgical techniques and microscopes, usually in combination with high quality video recorders, is used to visualize the microcirculation. Originally this technique was used in relatively transparent tissues like the bat wing, hamster cheek pouch, or rat mesentery. Later developments using trans- and epi-illumination have allowed wider access to the microcirculation of other tissues, such as skeletal muscle, the brain, and the heart. The recent introduction of …

Country
Netherlands
Related Organizations
Keywords

Disease Models, Animal, Phenotype, Cardiovascular Diseases, Risk Factors, Microcirculation, Hypertension, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
bronze