Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
Circulation
Article . 2012 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2012
versions View all 3 versions
addClaim

Epithelial-to-Mesenchymal and Endothelial-to-Mesenchymal Transition

From Cardiovascular Development to Disease
Authors: Jason C, Kovacic; Nadia, Mercader; Miguel, Torres; Manfred, Boehm; Valentin, Fuster;

Epithelial-to-Mesenchymal and Endothelial-to-Mesenchymal Transition

Abstract

Cellular switching from an epithelial-to-mesenchymal phenotype, and conversely from a mesenchymal-to-epithelial phenotype, are important biological programs that are operative from conception to death in mammalian organisms. Indeed, the capacity of cells to switch between these states has been fundamental to the generation of complex body patterns throughout evolution. Phenotypic switching from an epithelial to mesenchymal cell, termed epithelial-to-mesenchymal transition (EMT), was a paradigm that evolved from numerous observations on early embryonic development, the foundations of which date back to the 1920s and the pioneering work of Johannes Holtfreter on embryo formation and differentiation.1,2 By the late 1960s, seminal chick embryo studies by Elizabeth Hay3 led to the first formal description that epithelial cells can undergo a dramatic phenotypic transformation and give rise to embryonic mesoderm.4 Subsequent studies have revealed that this process is reversible (mesenchymal-to-epithelial transition [MET]), and gradually the term ‘transition” has come to replace ‘transformation.” Given that EMT/MET was initially identified and described by developmental biologists, it is perhaps not surprising that these processes are best understood during embryonic implantation and development. As explored in this review, it is now known that successive waves of cellular transition, from an epithelial to mesenchymal and then back to an epithelial state, are required for normal embryonic patterning and organ formation. In addition, numerous studies that span a broad spectrum of physiological and pathological conditions have expanded our knowledge of EMT/MET and now provide evidence for the important role played by these processes in various adult conditions including fibrosis, wound repair, inflammation, and malignancy. Indeed, our conceptual framework now also encompasses several variations and subcategories of cellular phenotypic switching, including endothelial-to-mesenchymal transition (EndMT). In this review, epithelial, endothelial, and mesenchymal phenotypic cellular switching will be explored in the cardiovascular system, spanning cardiovascular development through to adult …

Keywords

Epithelial-Mesenchymal Transition, Myocardium, Heart, Fibrosis, Heart Valves, Transforming Growth Factor beta, Animals, Humans, Endothelium, T-Box Domain Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    354
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
354
Top 1%
Top 1%
Top 1%
bronze