Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arteriosclerosis An ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Platelet activation.

Authors: M B, Zucker; V T, Nachmias;

Platelet activation.

Abstract

Platelets are discoidal cytoplasmic particles that respond to a variety of stimuli by developing filopodia and rounding up (shape change), developing the ability to bind fibrinogen from the medium, and, with strong stimuli such as thrombin and PAF-acether, secreting the contents of several types of granules. Arachidonic acid is cleaved from phospholipids by phospholipase A2 and converted by the platelets to endoperoxides, and then to thromboxane A2. The bound dimeric fibrinogen molecules probably cause aggregation by forming bridges between platelets. Aggregation is reinforced by secreted fibrinogen and thrombospondin, which binds the platelets, and by thromboxane A2 and endoperoxides, as well as secreted ADP, which cause additional receptor-mediated activation. The responses to these stimuli are initiated when the agonists bind to specific receptors on the plasma membrane. Subsequent steps resemble those in other types of responsive cells: breakdown of phosphatidylinositol bisphosphate into diacylglycerol, a stimulator of protein kinase C, and inositol-1,4,5-trisphosphate, recently shown to be a potent calcium ionophore. The response of shape change results from increased cytoplasmic Ca2+ which permits phosphorylation of one of the light chains of myosin by a calcium-calmodulin-dependent kinase, with resulting enhanced actin-myosin interaction. Secretion is associated with phosphorylation of a 40,000 to 47,000 dalton protein by the diacylglycerol-activated protein kinase C. These recent findings have increased our understanding of the mechanisms of platelet activation, but much remains to be learned. How do agonist-receptor complexes influence PIP2 breakdown? Is this indeed the first step in activation? What mediates adhesion of platelets to the injured blood vessel wall? Does transduction of this stimulus occur by the same mechanism as transduction of commonly used soluble stimuli? What is the role of the phosphorylated 40-47 K protein in secretion? What change in GP IIb-IIIa promotes their ability to bind fibrinogen? What is the role of calcium-activated protease? Of the phosphorylation of actin-binding protein? Progress is being made rapidly, and these questions may be answered within a few years.

Keywords

Blood Platelets, Arachidonic Acid, Platelet Aggregation, Microfilament Proteins, Sodium, Receptors, Cell Surface, Arachidonic Acids, Platelet Membrane Glycoproteins, Hydrogen-Ion Concentration, Myosins, Cytoplasmic Granules, Phosphatidylinositols, Microtubules, Platelet Adhesiveness, Humans, Calcium, Protein Kinases, Cytoskeleton, Protein Kinase C

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    255
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
255
Top 10%
Top 1%
Top 1%
gold