<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 16397140
Tissue factor (TF) encryption is the post-translational suppression of TF procoagulant activity (PCA) on the cell surface. There is emerging evidence of encrypted TF in normal blood associated with monocytes and platelets. Expression of this latent TF PCA during the propagation phase of blood coagulation may contribute to hemostasis. One pathway leading to the decryption of TF PCA begins with an increase in cytosolic calcium. A large calcium influx triggers both the exposure of phosphatidylserine and the expression of TF PCA on cell surfaces. The connections between these events are reviewed along with evidence that lipid raft association may also contribute to TF encryption. The last step in the decryption of TF PCA is the proteolytic activation of zymogen factor VII. This event may be a key to understanding the different roles of intravascular and extravascular TF in the process of blood coagulation.
Blood Platelets, Animals, Humans, Blood Coagulation, Monocytes, Thromboplastin
Blood Platelets, Animals, Humans, Blood Coagulation, Monocytes, Thromboplastin
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 240 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |