Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Marginal Fit and Internal Adaptation of Monolithic Zirconia 3-Unit Fixed Dental Prosthesis: In Vitro Study

Authors: Nuha A, Alkaff; Dorin N, Ruse; Kevin, Aminzadeh; Alan G, Hannam; Nesrine, Mostafa;

Marginal Fit and Internal Adaptation of Monolithic Zirconia 3-Unit Fixed Dental Prosthesis: In Vitro Study

Abstract

To compare the marginal and internal fit of monolithic zirconia (MZ) 3-unit fixed dental prostheses (FDPs) fabricated using two CAD/CAM workflows: full-chairside (FCH) and lab (LAB).The right maxillary first premolar and first molar were prepared for MZ 3-unit FDPs on a typodont. CEREC Primescan digitized the typodont model 15 Omes. A total of 30 FDPs was fabricated using two processes: FCH (n = 15) and LAB (n = 15). FCH and LAB FDPs were designed using CEREC SW 4.5.1 and Exocad and milled using CEREC MC X and Zirkonzhan 600/V3, respectively. A fast-sintering protocol was used in both groups. A dual-scan technique was used to assess the cement space at the occlusal surface (OC), axial wall (AX), and margin (MA). Statistical analysis of the results was performed using univariate ANOVA with Scheff. post hoc test (a = .05).Measurements in the FCH and LAB groups were within the clinically acceptable marginal and internal fit. The fit of FCH FDPs at MA, AX, and OC was 77.50 ± 29.99 μm, 99.67 ± 21.58 μm, and 150.03 ± 30.78 μm, respectively. The fit of LAB FDPs at MA, AX, and OC was 100.27 ± 27.06 μm, 116.53 ± 17.90 μm, and 142.30 ± 19.00 μm, respectively. The difference between the two groups was not statistically significant.MZ 3-unit FDPs fabricated using FCH have clinically acceptable marginal and internal fit. This result verifies the ability of FCH workflow to fabricate MZ mulOunit FDPs in a single visit.

Keywords

Dental Prosthesis, Dental Prosthesis Design, Dental Cements, Computer-Aided Design, Zirconium, Dental Marginal Adaptation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!