Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Respirationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Respiration
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Respiration
Article . 2016 . Peer-reviewed
Data sources: Crossref
Respiration
Article . 2017
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methods for Measuring Lung Volumes: Is There a Better One?

Authors: TANTUCCI, Claudio; BOTTONE, Damiano; BORGHESI, Andrea; GUERINI, Michele; QUADRI, Federico; PINI, Laura;

Methods for Measuring Lung Volumes: Is There a Better One?

Abstract

<b><i>Background:</i></b> Accurate measurement of lung volumes is of paramount importance to establish the presence of ventilatory defects and give insights for diagnostic and/or therapeutic purposes. <b><i>Objectives:</i></b> It was the aim of this study to measure lung volumes in subjects with respiratory disorders and in normal controls by 3 different techniques (plethysmographic, dilutional and radiographic methods), in an attempt to clarify the role of each of them in performing such a task, without any presumptive ‘a priori' superiority of one method above others. <b><i>Patients and</i></b><b><i>Methods:</i></b> In different groups of subjects with obstructive and restrictive ventilatory defects and in a normal control group, total lung capacity, functional residual capacity (FRC) and residual volume were measured by body plethysmography, multi-breath helium (He) dilution and radiographic CT scan method with spirometric gating. <b><i>Results:</i></b> The 3 methods gave comparable results in normal subjects and in patients with a restrictive defect. In patients with an obstructive defect, CT scan and plethysmography showed similar lung volumes, while on average significantly lower lung volumes were obtained with the He dilution technique. Taking into account that the He dilution technique does primarily measure FRC during tidal breathing, our data suggest that in some patients with an obstructive defect, a number of small airways can be functionally closed at end-expiratory lung volume, preventing He to reach the lung regions subserved by these airways. <b><i>Conclusion:</i></b> In all circumstances, both CT scan with spirometric gating and plethysmographic methods provide similar values of lung volumes. In contrast, the He dilution method can measure lower lung volumes in some patients with chronic airflow obstruction.

Related Organizations
Keywords

Lung Diseases, Male, Functional Residual Capacity, Total Lung Capacity, Indicator Dilution Techniques, Middle Aged, Helium, Plethysmography, Residual Volume, Spirometry, Case-Control Studies, Lung volume management; Ventilatory defects; Pulmonary and Respiratory Medicine, Humans, Female, Lung Volume Measurements, Tomography, X-Ray Computed, Lung, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities