
Stiffness of large arteries has been long recognized as a significant determinant of pulse pressure. However, it is only in recent decades, with the accumulation of longitudinal data from large and varied epidemiological studies of morbidity and mortality associated with cardiovascular disease, that it has emerged as an independent predictor of cardiovascular risk. This has generated substantial interest in investigations related to intrinsic causative and associated factors responsible for the alteration of mechanical properties of the arterial wall, with the aim to uncover specific pathways that could be interrogated to prevent or reverse arterial stiffening. Much has been written on the haemodynamic relevance of arterial stiffness in terms of the quantification of pulsatile relationships of blood pressure and flow in conduit arteries. Indeed, much of this early work regarded blood vessels as passive elastic conduits, with the endothelial layer considered as an inactive lining of the lumen and as an interface to flowing blood. However, recent advances in molecular biology and increased technological sophistication for the detection of low concentrations of biochemical compounds have elucidated the highly important regulatory role of the endothelial cell affecting vascular function. These techniques have enabled research into the interaction of the underlying passive mechanical properties of the arterial wall with the active cellular and molecular processes that regulate the local environment of the load-bearing components. This review addresses these emerging concepts.
Review
Review
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 111 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
