Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://europepmc.or...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://europepmc.org/articles...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1159/000324...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Epigenetic Mechanisms

Authors: Louisa M, Villeneuve; Rama, Natarajan;

Epigenetic Mechanisms

Abstract

The incidence of diabetes and related complications like nephropathy is growing rapidly and has become a major health care issue. Changes in the environment and nutritional habits have been implicated as major players. Furthermore, it is becoming increasingly clear that epigenetic factors may modulate the connections between genes and the environment. While diabetes in itself is treatable to a large extent, it is still associated with significantly increased risk for complications including chronic kidney and cardiovascular diseases. Current treatments have added preventative approaches so as to avoid future diabetic complications. Unfortunately, diabetic patients are often plagued with the continued development of various complications even after achieving glucose control. This has been suggested to be attributable to a mysterious phenomenon termed 'metabolic memory' of the prior glycemic state. Recent studies have suggested that epigenetic changes to chromatin can affect gene expression in response to various stimuli, and changes in key biochemical pathways and epigenetic histone and DNA methylation patterns in chromatin have been observed in a diabetic milieu. These accumulating data suggest that metabolic or hyperglycemic memory may be due to epigenetic changes in specific target tissues altering gene expression without changing the genetic code itself. While the genetics of diabetes has long been the focus of scientific research, much less is known about the role of epigenetics and the related molecular pathways that might affect the development of diabetes and the associated complications. Further studies of epigenetic mechanisms are therefore timely and could provide valuable new insights into the pathology of diabetic complications and also uncover much needed new therapeutic targets.

Keywords

Diabetes Complications, Clinical Trials as Topic, Gene Expression Regulation, Animals, Humans, Diabetic Nephropathies, Epigenesis, Genetic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%