
Haplotypes provide valuable information in the study of diseases, complex traits, population histories, and evolutionary genetics. With the dramatic increase in the number of available single nucleotide polymorphism (SNP) markers, haplotype inference (haplotyping) using observed genotype data has become an important component of genetic studies in general and of statistical gene mapping in particular. Existing haplotyping methods include (1) population-based methods, (2) methods for pooled DNA samples, and (3) methods for family and pedigree data. The methods and computer programs for population data and pooled DNA samples were reviewed recently in the literature. As several authors noted, family and pedigree datasets are abundant and have unique advantages. In the past twenty years, many haplotyping methods for family and pedigree data have been developed. Therefore, in this contribution we review haplotyping methods and the corresponding computer programs suitable for family and pedigree data and discuss their applications and limitations. We explore the connections among these methods, and describe the challenges that remain to be addressed.
Likelihood Functions, Haplotypes, Animals, Chromosome Mapping, Humans, Bayes Theorem, Computer Simulation, Polymorphism, Single Nucleotide, Algorithms, Pedigree
Likelihood Functions, Haplotypes, Animals, Chromosome Mapping, Humans, Bayes Theorem, Computer Simulation, Polymorphism, Single Nucleotide, Algorithms, Pedigree
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
