Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Vascular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Blood Vessels
Article . 1991
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sodium Cotransport in Vascular Smooth Muscle Cells

Authors: N. E. Owen; Martha E O'Donnell;

Sodium Cotransport in Vascular Smooth Muscle Cells

Abstract

Vascular smooth muscle cells possess a number of Na cotransport systems. Three of these cotransport systems, Na/Ca exchange, Na/H exchange and Na-K-Cl cotransport, have been the subject of an increasing number of investigations to determine the respective roles of these transporters in vascular smooth muscle cell function. Evidence has been obtained that the Na/Ca exchange system participates in regulation of intracellular Ca in vascular smooth muscle cells. The Na/H exchange system appears to function in concert with a Cl/HCO<sub>3</sub> exchange system to regulate intracellular pH. The Na-K-Cl cotransport system is a major contributor to K flux across the plasma membrane of vascular smooth muscle cells and is regulated by a number of vasoactive agents, suggesting that this Na cotransport system is also an important component of vascular smooth muscle cell function. Cultured vascular smooth muscle cells derived from spontaneously hypertensive rats have been found to exhibit reduced Na-K-Cl cotransport activity compared to smooth muscle cells from normotensive controls. Thus, alteration of vascular smooth muscle Na-K-Cl cotransport activity may be related to changes in vascular tone. However, the precise function of Na-K-Cl cotransport in vascular smooth muscle cells remains to be clarified. Recent studies of Na-K-Cl cotransport in vascular endothelial cells provide evidence that the co-transporter is important for regulation of endothelial cell volume and suggest that this Na cotransport system may be vitally important for normal function of the vasculature.

Keywords

Chlorides, Sodium, Potassium, Animals, Humans, Biological Transport, Calcium, Endothelium, Vascular, Protons, Muscle, Smooth, Vascular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!