
doi: 10.1159/000151767
pmid: 18765948
<i>Background/Aims:</i> The roles of intercellular communication and T-type versus L-type voltage-dependent Ca<sup>2+</sup> channels (VDCCs) in conducted vasoconstriction to local KCl-induced depolarization were investigated in mesenteric arterioles. <i>Methods:</i> Ratiometric Ca<sup>2+</sup> imaging (R) using Fura-PE3 with micro-ejection of depolarizing KCl solution and VDCC blockers, and immunohistochemical and RT-PCR techniques were applied to isolated rat mesenteric terminal arterioles (n = 71 from 47 rats; intraluminal diameter: 24 ± 1 μm; length: 550–700 μm). <i>Results:</i> Local application of KCl (at 0 μm) led to local (ΔR = 0.54) and remote (ΔR = 0.17 at 500 μm) increases in intracellular Ca<sup>2+</sup>. Remote Ca<sup>2+</sup> responses were inhibited by the gap junction uncouplers carbenoxolone and palmitoleic acid. Ca<sub>V</sub>1.2, Ca<sub>V</sub>3.1 and Ca<sub>V</sub>3.2 channels were immunolocalized in vascular smooth muscle cells and Ca<sub>V</sub>3.2 in adjacent endothelial cells. Local and remote Ca<sup>2+</sup> responses were inhibited by bath application of L- and T-type blockers [nifedipine, NNC 55-0396 and R(–)-efonidipine]. Remote Ca<sup>2+</sup> responses (500 μm) were not affected by abolishing Ca<sup>2+</sup> entry at an intermediate position on the arterioles (at 200–300 μm) using micro-application of VDCC blockers. <i>Conclusion:</i> Both L- and T-type channels mediate Ca<sup>2+</sup> entry during conducted vasoconstriction to local KCl in mesenteric arterioles. However, these channels do not participate in the conduction process per se.
Male, Time Factors, Calcium Channels, L-Type, Gap Junctions, Calcium Channel Blockers, Mesenteric Arteries, Potassium Chloride, Rats, Rats, Sprague-Dawley, Arterioles, Calcium Channels, T-Type, Vasoconstriction, Animals, Vasoconstrictor Agents, Calcium Signaling, RNA, Messenger, Sodium Channel Blockers
Male, Time Factors, Calcium Channels, L-Type, Gap Junctions, Calcium Channel Blockers, Mesenteric Arteries, Potassium Chloride, Rats, Rats, Sprague-Dawley, Arterioles, Calcium Channels, T-Type, Vasoconstriction, Animals, Vasoconstrictor Agents, Calcium Signaling, RNA, Messenger, Sodium Channel Blockers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
