Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nephron Physiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nephron Physiology
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Renal Vascular Resistance in Sepsis

Authors: Christoph, Langenberg; Rinaldo, Bellomo; Clive N, May; Moritoki, Egi; Li, Wan; Stanislao, Morgera;

Renal Vascular Resistance in Sepsis

Abstract

<i>Aims:</i> To assess changes in renal vascular resistance (RVR) in human and experimental sepsis and to identify determinants of RVR. <i>Methods:</i> We performed a systematic interrogation of two electronic reference libraries using specific search terms. Subjects were animals and patients involved in experimental and human studies of sepsis and septic acute renal failure, in which the RVR was assessed. We obtained all human and experimental articles reporting RVR during sepsis. We assessed the role of various factors that might influence the RVR during sepsis using statistical methods. <i>Results:</i> We found no human studies, in which the renal blood flow (and, therefore, the RVR) was measured with suitably accurate direct methods. Of the 137 animal studies identified, 52 reported a decreased RVR, 16 studies reported no change in RVR, and 69 studies reported an increased RVR. Consciousness of animals, duration of measurement, method of induction of sepsis, and fluid administration had no effect on the RVR. On the other hand, on univariate analysis, size of the animals (p<0.001), technique of measurement (p = 0.017), recovery after surgery (p = 0.004), and cardiac output (p <0.001) influenced the RVR. Multivariate analysis, however, showed that only cardiac output (p = 0.028) and size of the animals (p = 0.031) remained independent determinants of the RVR. <i>Conclusions:</i> Changes in RVR during sepsis in humans are unknown. In experimental sepsis, several factors not directly related to sepsis per se appear to influence the RVR. A high cardiac output and the use of large animals predict a decreased RVR, while a decreased cardiac output and the use of small animals predict an increased RVR.

Keywords

Acute Kidney Injury, Kidney, Renal Circulation, Vasoconstriction, Sepsis, Models, Animal, Animals, Body Size, Humans, Vascular Resistance, Cardiac Output

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!