Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cells Tissues Organsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access LMU
Article . 1998
Data sources: Open Access LMU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cells Tissues Organs
Article . 1998 . Peer-reviewed
Data sources: Crossref
Acta Anatomica
Article . 1998
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Glycobiology of the Olfactory System

Authors: Plendl, J.; Sinowatz, Fred;

Glycobiology of the Olfactory System

Abstract

The olfactory system is a highly plastic region of the nervous system. Continuous remodeling of neuronal circuits in the olfactory bulb takes place throughout life as a result of constant turnover of primary sensory olfactory neurons in the periphery. Glycoconjugates are very important in olfactory development, regeneration and function. This article deals with different aspects of glycobiology relevant for the olfactory system. Various anatomical, developmental and functional subdivisions of the olfactory system have been labeled with exogenous lectins. The application of reverse lectin histochemistry resulted in the visualization of endogenous lectins, involved in fasciculation of olfactory axons. Numerous glycoproteins, among them members of the immunoglobulin superfamily, the cadherins and integrins as well as different glycolipids and proteoglycans can act as surface adhesion molecules in the olfactory system. The olfactory-specific form of the sialoglycoprotein neural cell adhesion molecule is implicated in olfactory neuronal and axonal guidance. Glycoconjugates including laminin, fibronectin and proteoglycans are abundant components of the olfactory extracellular matrix, influencing neurite outgrowth and cellular migration. Immunohistochemical labeling has revealed occurrence of the carbohydrate differentiation antigen, playing a role in neurulation and morphogenesis of the very early olfactory system. The synaptic vesicle glycoprotein, appearing also early in olfactory development, is used as a marker of olfactory tumors. Finally, membrane and transmembrane glycoconjugates as well as secreted glycoconjugates may act as olfactory receptor molecules.

Country
Germany
Keywords

Neurons, Olfactory Nerve, Histocytochemistry, Cell Differentiation, Olfactory Pathways, Olfactory Bulb, Mice, Cell Movement, Lectins, Cell Adhesion, Animals, Vomeronasal Organ, Glycoconjugates

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
Green
bronze