Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heidelberger Dokumen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Structure of Galaxy Clusters

Authors: Puchwein, Ewald;

On the Structure of Galaxy Clusters

Abstract

I summarise the state of the scientific exploration of the structure of galaxy clusters and present two new studies, namely, I propose and test a novel method to model clusters by a joint X-ray, thermal Sunyaev-Zeldovich and lensing analysis, and I investigate the impact of baryonic physics on strong cluster lensing and cluster structure. The three-dimensional reconstruction methods I propose assume only axial symmetry of the cluster with respect to an arbitrarily inclined axis. Cluster gas density and temperature distributions are found from X-ray and Sunyaev-Zeldovich data. Cumulative total-mass profiles and three-dimensional gravitational potentials are then obtained from these gas reconstructions assuming hydrostatic equilibrium, or independently by a gravitational lensing analysis, neglecting it. Hydrostatic equilibrium is quantitatively probed by comparing the two. The methods are described in detail and shown to perform well on progressively realistic synthetic data. Previous strong cluster lensing studies neglected the impact of the intracluster gas. I investigate it comparing simulations including gas physics at different levels of complexity. I found that adiabatic gas leaves strong lensing cross sections unchanged or somewhat reduces them, depending on the artificial viscosity implementation, while cooling and star formation steepen core density profiles and increase strong-lensing efficiencies considerably.

Related Organizations
Keywords

520 Astronomy and allied sciences, 520

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green