
It has long been established by Khan that the superoxide anion, , generates singlet oxygen, , during dismutation. Auranofin, gold‐phosphine thiols, β‐Carotene, and metal‐sulfur compounds can rapidly quench singlet O2. The quenching of the , which exists at 7752 cm-1 above the ground state triplet, may be due to the direct interaction of the singlet O2 with gold(I) or may require special ligands such as those containing sulfur coordinated to the metal. Thus we have been examining the excited state behavior of gold(I) species and the mechanisms for luminescence. Luminescence is observed under various conditions, with visible emission ranging from blue to red depending on the ligands coordinated to gold(I). Triplet state emission can be found from mononuclear three coordinate Au(I) species, including species which display this behavior in aqueous solution. A description is given of the luminescent three coordinate TPA (triazaphosphaadamantane) and TPPTS (triphenylphosphine‐trisulfonate) complexes, the first examples of water soluble luminescent species of gold(I).
Research Article
Research Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
