
Diabetic retinopathy is one of the common complications of diabetes. Unfortunately, in many cases the patient is not aware of any symptoms until it is too late for effective treatment. Through analysis of evoked potential response of the retina, the optical nerve, and the optical brain center, a way will be paved for early diagnosis of diabetic retinopathy and prognosis during the treatment process. In this paper, we present an artificial‐neural‐network‐based method to classify diabetic retinopathy subjects according to changes in visual evoked potential spectral components and an anatomically realistic computer model of the human eye under normal and retinopathy conditions in a virtual environment using 3D Max Studio and Windows Movie Maker.
Research Article
Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
