Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geofluidsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geofluids
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geofluids
Article . 2022
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Investigation on Small-Strain Stiffness Characteristics of Undisturbed and Compacted Highly Weathered Granites at Various Densities

Authors: Juntao Wang; Lingwei Kong; Junbiao Yan; Zhenhua Zhou;

Comparative Investigation on Small-Strain Stiffness Characteristics of Undisturbed and Compacted Highly Weathered Granites at Various Densities

Abstract

To investigate the small-strain stiffness characteristics of highly weathered granite (HWG), a resonance column test system was used to conduct resonance column tests on highly weathered granite taken from the Lincang City, Yunnan Province, China. The effects of effective consolidation stress and structural changes is caused by remodeling process and initial dry density on the small-strain stiffness of HWG. Furthermore, the difference between the test data and other geotechnical materials were compared and analyzed. The test results show that the maximum dynamic shear modulus G max of remodeled highly weathered granite samples is greater than that of undisturbed samples once the effective consolidation stress is smaller than 300 kPa, but the opposite result is observed once the effective consolidation stress exceeds 300 kPa, and the phenomenon was also explained from a microscopic perspective based on the scanning electron microscopy (SEM). The G max of remodeled highly weathered granite gradually increases with the increase in dry density and effective consolidation stress. At an identical effective consolidation stress, the dynamic shear modulus ratio G / G max − γ curves of remodeled highly weathered granites at different initial dry densities are nearly consistent. Additionally, according to the test data, the mathematical model of G max for remodeled highly weathered granite considering effective consolidation pressure and initial dry density was established and agrees well with the test results of practical engineering cases. The range of variation in G / G max was given by the research results, which were compared with the G / G max of weathered granite obtained from the existing research, and the results in this work can provide a valuable reference for analyzing dynamic stability of buildings in the engineering construction of weathered granite sites.

Related Organizations
Keywords

QE1-996.5, Geology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold