
Objective. Vitamin D is associated with neurological deficits in patients with cerebral infarction. This study uses machine learning to evaluate the prediction model’s efficacy of the correlation between vitamin D and neurological deficit in patients with cerebral infarction. Methods. A total of 200 patients with cerebral infarction admitted to the Department of Neurology of our hospital from July 2018 to June 2019 were selected. The patients were randomly divided into a training set ( n = 140 ) and a test set ( n = 60 ) in a 7 : 3 ratio. The prediction model is constructed from the training set’s data, and the model’s prediction effect was evaluated by test set data. The area under the receiver operator characteristic curve was used to assess the prediction efficiency of models. Results. In the training set, the area under the curve (AUC) of the logistic regression model and XGBoost algorithm model was 0.727 (95% CI: 0.601~0.854) and 0.818 (95% CI: 0.734~0.934), respectively. While in the test set, the AUC of the logistic regression model and XGBoost algorithm model was 0.761 (95% CI: 0.640~0.882) and 0.786 (95% CI: 0.670~0.902), respectively. Conclusion. The prediction model of the correlation between vitamin D and neurological deficit in patients with cerebral infarction based on machine learning has a good prediction efficiency.
Machine Learning, Logistic Models, Area Under Curve, Humans, Cerebral Infarction, Vitamin D, Research Article, Retrospective Studies
Machine Learning, Logistic Models, Area Under Curve, Humans, Cerebral Infarction, Vitamin D, Research Article, Retrospective Studies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
