
doi: 10.1155/2021/8096874
Let G be a simple graph of order n . The matrix ℒ G = D G − A G is called the Laplacian matrix of G , where D G and A G denote the diagonal matrix of vertex degrees and the adjacency matrix of G , respectively. Let l 1 G , l n − 1 G be the largest eigenvalue, the second smallest eigenvalue of ℒ G respectively, and λ 1 G be the largest eigenvalue of A G . In this paper, we will present sharp upper and lower bounds for l 1 G and l n − 1 G . Moreover, we investigate the relation between l 1 G and λ 1 G .
Eigenvalues, singular values, and eigenvectors, Graphs and linear algebra (matrices, eigenvalues, etc.)
Eigenvalues, singular values, and eigenvectors, Graphs and linear algebra (matrices, eigenvalues, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
