Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Security and Communi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Security and Communication Networks
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Security and Communication Networks
Article
License: CC BY
Data sources: UnpayWall
DBLP
Article
Data sources: DBLP
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

Practical CCA-Secure Functional Encryptions for Deterministic Functions

Authors: Huige Wang; Kefei Chen; Tianyu Pan; Yunlei Zhao;

Practical CCA-Secure Functional Encryptions for Deterministic Functions

Abstract

Functional encryption (FE) can implement fine-grained control to encrypted plaintext via permitting users to compute only some specified functions on the encrypted plaintext using private keys with respect to those functions. Recently, many FEs were put forward; nonetheless, most of them cannot resist chosen-ciphertext attacks (CCAs), especially for those in the secret-key settings. This changed with the work, i.e., a generic transformation of public-key functional encryption (PK-FE) from chosen-plaintext (CPA) to chosen-ciphertext (CCA), where the underlying schemes are required to have some special properties such as restricted delegation or verifiability features. However, examples for such underlying schemes with these features have not been found so far. Later, a CCA-secure functional encryption from projective hash functions was proposed, but their scheme only applies to inner product functions. To construct such a scheme, some nontrivial techniques will be needed. Our key contribution in this work is to propose CCA-secure functional encryptions in the PKE and SK environment, respectively. In the existing generic transformation from (adaptively) simulation-based CPA- (SIM-CPA-) secure ones for deterministic functions to (adaptively) simulation-based CCA- (SIM-CCA-) secure ones for randomized functions, whether the schemes were directly applied to CCA settings for deterministic functions is not implied. We give an affirmative answer and derive a SIM-CCA-secure scheme for deterministic functions by making some modifications on it. Again, based on this derived scheme, we also propose an (adaptively) indistinguishable CCA- (IND-CCA-) secure SK-FE for deterministic functions. The final results show that our scheme can be instantiated under both nonstandard assumptions (e.g., hard problems on multilinear maps and indistinguishability obfuscation (IO)) and under standard assumptions (e.g., DDH, RSA, LWE, and LPN).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold