
doi: 10.1155/2020/6698446
In this paper, a sparse recovery algorithm based on a double-pulse FDA-MIMO radar is proposed to jointly extract the angle and range estimates of targets. Firstly, the angle estimates of targets are calculated by transmitting a pulse with a zero frequency increment and employing the improved l 1 -SVD method. Subsequently, the range estimates of targets are achieved by utilizing a pulse with a nonzero frequency increment. Specifically, after obtaining the angle estimates of targets, we perform dimensionality reduction processing on the overcomplete dictionary to achieve the automatically paired range and angle in range estimation. Grid partition will bring a heavy computational burden. Therefore, we adopt an iterative grid refinement method to alleviate the above limitation on parameter estimation and propose a new iteration criterion to improve the error between real parameters and their estimates to get a trade-off between the high-precision grid and the atomic correlation. Finally, the proposed algorithm is evaluated by providing the results of the Cramér-Rao lower bound (CRLB) and numerical root mean square error (RMSE).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
