
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1155/2020/4513183
A fusion method based on the cartoon+texture decomposition method and convolution sparse representation theory is proposed for medical images. It can be divided into three steps: firstly, the cartoon and texture parts are obtained using the improved cartoon-texture decomposition method. Secondly, the fusion rules of energy protection and feature extraction are used in the cartoon part, while the fusion method of convolution sparse representation is used in the texture part. Finally, the fused image is obtained using superimposing the fused cartoon and texture parts. Experiments show that the proposed algorithm is effective.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
