
doi: 10.1155/2016/5749892
This paper investigates a new nonautonomous impulsive stochastic predator‐prey system with the omnivorous predator. First, we show that the system has a unique global positive solution for any given initial positive value. Second, the extinction of the system under some appropriate conditions is explored. In addition, we obtain the sufficient conditions for almost sure permanence in mean and stochastic permanence of the system by using the theory of impulsive stochastic differential equations. Finally, we discuss the biological implications of the main results and show that the large noise can make the system go extinct. Simulations are also carried out to illustrate our theoretical analysis conclusions.
Population dynamics (general), QA1-939, Mathematics
Population dynamics (general), QA1-939, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
