
doi: 10.1155/2012/908356
In this work a convex relaxation of a subgraph isomorphism problem is proposed, which leads to a new lower bound that can provide a proof that a subgraph isomorphism between two graphs can not be found. The bound is based on a semidefinite programming relaxation of a combinatorial optimisation formulation for subgraph isomorphism and is explained in detail. We consider subgraph isomorphism problem instances of simple graphs which means that only the structural information of the two graphs is exploited and other information that might be available (e.g., node positions) is ignored. The bound is based on the fact that a subgraph isomorphism always leads to zero as lowest possible optimal objective value in the combinatorial problem formulation. Therefore, for problem instances with a lower bound that is larger than zero this represents a proof that a subgraph isomorphism can not exist. But note that conversely, a negative lower bound does not imply that a subgraph isomorphism must be present and only indicates that a subgraph isomorphism can not be excluded. In addition, the relation of our approach and the reformulation of the largest common subgraph problem into a maximum clique problem is discussed.
Combinatorial optimization, Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.), Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.), combinatorial optimization problem, Error-correcting graph matching
Combinatorial optimization, Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.), Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.), combinatorial optimization problem, Error-correcting graph matching
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
