<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1155/2011/825327
This paper focuses on the data fusion scenario where nodes sense and transmit the data generated by a source to a common destination, which estimates the original information from more accurately than in the case of a single sensor. This work joins the upsurge of research interest in this topic by addressing the setup where the sensed information is transmitted over a Gaussian Multiple-Access Channel (MAC). We use Low Density Generator Matrix (LDGM) codes in order to keep the correlation between the transmitted codewords, which leads to an improved received Signal-to-Noise Ratio (SNR) thanks to the constructive signal addition at the receiver front-end. At reception, we propose a joint decoder and estimator that exchanges soft information between the LDGM decoders and a data fusion stage. An error-correcting Bose, Ray-Chaudhuri, Hocquenghem (BCH) code is further applied suppress the error floor derived from the ambiguity of the MAC channel when dealing with correlated sources. Simulation results are presented for several values of and diverse LDGM and BCH codes, based on which we conclude that the proposed scheme outperforms significantly (by up to 6.3 dB) the suboptimum limit assuming separation between Slepian-Wolf source coding and capacity-achieving channel coding.
TK7800-8360, Computer Networks and Communications, Signal Processing, Telecommunication, TK5101-6720, Electronics, Computer Science Applications
TK7800-8360, Computer Networks and Communications, Signal Processing, Telecommunication, TK5101-6720, Electronics, Computer Science Applications
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |