<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
It is shown that Schrödinger's equation may be derived from three postulates. The first is a kind of statistical metamorphosis of classical mechanics, a set of two relations which are obtained from the canonical equations of particle mechanics by replacing all observables by statistical averages. The second is a local conservation law of probability with a probability current which takes the form of a gradient. The third is a principle of maximal disorder as realized by the requirement of minimal Fisher information. The rule for calculating expectation values is obtained from a fourth postulate, the requirement of energy conservation in the mean. The fact that all these basic relations of quantum theory may be derived from premises which are statistical in character is interpreted as a strong argument in favor of the statistical interpretation of quantum mechanics. The structures of quantum theory and classical statistical theories are compared, and some fundamental differences are identified.
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |