
The runway configuration management (RCM) problem governs what combinations of airport runways are in use at a given time, and to what capacity. Runway configurations (groupings of runways) operate under runway configuration capacity envelopes (RCCEs) which limit arrival and departure capacities. The RCCE identifies unique capacity constraints based on which tarmacs are used for arrivals, departures, or both, and their direction of travel. When switching between RCCEs, some decrement in arrival and departure capacities is incurred by the transition. A previous RCM model (Frankovich et al., 2009) accounted for this cost through a required period of inactivity. In this paper, we instead focus on the introduction and assessment of a model capable of marginally decreasing RCCE capacities during configuration transitions. A transition penalty matrix is introduced, specifying the relative costs (in terms of accepted arrival and departure capacities) for switching between RCCEs. The new model benefits from customizable transition penalties which more closely represent real-world conditions, at a reasonable computational cost.
Case-oriented studies in operations research
Case-oriented studies in operations research
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
