
Using the backprojection filtration (BPF) and filtered backprojection (FBP) approaches, respectively, we prove that with cone‐beam CT the interior problem can be exactly solved by analytic continuation. The prior knowledge we assume is that a volume of interest (VOI) in an object to be reconstructed is known in a subregion of the VOI. Our derivations are based on the so‐called generalized PI‐segment (chord). The available projection onto convex set (POCS) algorithm and singular value decomposition (SVD) method can be applied to perform the exact interior reconstruction. These results have many implications in the CT field and can be extended to other tomographic modalities, such as SPECT/PET, MRI.
Medical physics. Medical radiology. Nuclear medicine, R895-920, Medical technology, R855-855.5, Research Article
Medical physics. Medical radiology. Nuclear medicine, R895-920, Medical technology, R855-855.5, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
