
pmid: 21742791
Noise and variability are fundamental companions to ion channels and synapses and thus inescapable elements of brain function. The overriding unresolved issue is to what extent noise distorts and limits signaling on one hand and at the same time constitutes a crucial and fundamental enrichment that allows and facilitates complex adaptive behavior in an unpredictable world. Here we review the growing experimental evidence that functional network activity is associated with intense fluctuations in membrane potential and spike timing. We trace origins and consequences of noise and variability. Finally, we discuss noise-free neuronal signaling and detrimental and beneficial forms of noise in large-scale functional neural networks. Evidence that noise and variability in some cases go hand in hand with behavioral variability and increase behavioral choice, richness, and adaptability opens new avenues for future studies.
Neurons, Behavior, Action Potentials, Electrophysiological Phenomena, Membrane Potentials, Synapses, Reaction Time, Animals, Humans, Nerve Net, Signal Transduction
Neurons, Behavior, Action Potentials, Electrophysiological Phenomena, Membrane Potentials, Synapses, Reaction Time, Animals, Humans, Nerve Net, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 59 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
