
pmid: 11015580
Lekven, Arne C., Kathryn Ann Helde, Christopher J. Thorpe, Rebecca Rooke, and Randall T. Moon. Reverse genetics in zebrafish. Physiol Genomics 2: 37–48, 2000.—The zebrafish has become a popular model system for the study of vertebrate developmental biology because of its numerous strengths as a molecular genetic and embryological system. To determine the requirement for specific genes during embryogenesis, it is necessary to generate organisms carrying loss-of-function mutations. This can be accomplished in zebrafish through a reverse genetic approach. This review discusses the current techniques for generating mutations in known genes in zebrafish. These techniques include the generation of chromosomal deletions and the subsequent identification of complementation groups within deletions through noncomplementation assays. In addition, this review will discuss methods currently being evaluated that may improve the methods for finding mutations in a known sequence, including screening for randomly induced small deletions within genes and screening for randomly induced point mutations within specific genes.
DNA Mutational Analysis, Genetic Complementation Test, Heteroduplex Analysis, Models, Biological, Polymerase Chain Reaction, Blastocyst, Genetic Techniques, Gene Targeting, Mutagenesis, Site-Directed, Animals, Genetic Testing, Chromosome Deletion, Zebrafish, Sequence Deletion
DNA Mutational Analysis, Genetic Complementation Test, Heteroduplex Analysis, Models, Biological, Polymerase Chain Reaction, Blastocyst, Genetic Techniques, Gene Targeting, Mutagenesis, Site-Directed, Animals, Genetic Testing, Chromosome Deletion, Zebrafish, Sequence Deletion
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
