Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Glycerol hyperhydration: physiological responses during cold-air exposure

Authors: Catherine, O'Brien; Beau J, Freund; Andrew J, Young; Michael N, Sawka;

Glycerol hyperhydration: physiological responses during cold-air exposure

Abstract

Hypohydration occurs during cold-air exposure (CAE) through combined effects of reduced fluid intake and increased fluid losses. Because hypohydration is associated with reduced physical performance, strategies for maintaining hydration during CAE are important. Glycerol ingestion (GI) can induce hyperhydration in hot and temperate environments, resulting in greater fluid retention compared with water (WI) alone, but it is not effective during cold-water immersion. Water immersion induces a greater natriuresis and diuresis than cold exposure; therefore, whether GI might be effective for hyperhydration during CAE remains unknown. This study examined physiological responses, i.e., thermoregulatory, cardiovascular, renal, vascular fluid, and fluid-regulating hormonal responses, to GI in seven men during 4 h CAE (15°C, 30% relative humidity). Subjects completed three separate, double-blind, and counterbalanced trials including WI (37 ml water/l total body water), GI (37 ml water/l total body water plus 1.5 g glycerol/l total body water), and no fluid. Fluids were ingested 30 min before CAE. Thermoregulatory responses to cold were similar during each trial. Urine flow rates were higher ( P = 0.0001) with WI (peak 11.8 ml/min, SD 1.9) than GI (5.0 ml/min, SD 1.8), and fluid retention was greater ( P = 0.0001) with GI (34%, SD 7) than WI (18%, SD 5) at the end of CAE. Differences in urine flow rate and fluid retention were the result of a greater free water clearance with WI. These data indicate glycerol can be an effective hyperhydrating agent during CAE.

Keywords

Adult, Glycerol, Male, Dehydration, Administration, Oral, Water, Water-Electrolyte Balance, Cold Temperature, Treatment Outcome, Body Water, Fluid Therapy, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!