Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modification of lymph by lymph nodes. III. Effect of increased lymph hydrostatic pressure

Authors: A. C. Guyton; T. H. Adair;

Modification of lymph by lymph nodes. III. Effect of increased lymph hydrostatic pressure

Abstract

Previous studies have shown that lymph nodes function as fluid exchange chambers in which the protein concentration of lymph is changed in the direction required to establish equilibrium of the Starling forces acting across the nodal blood-lymph barrier. We examined the effect of increased lymph hydrostatic pressure on efferent lymph by use of an isolated dog popliteal node preparation in which lymph having a protein concentration averaging 27.6 +/- 1.2% (SD) of that of plasma was infused into the node at a flow rate averaging 45.6 +/- 0.2 (SD) microliter/min. We compared steady-state values of prenodal and postnodal lymph flow and protein concentration following step increases in efferent lymph pressure from 0 to over 15 mmHg. Increasing efferent lymph pressure to values less than about 8 mmHg caused the efferent lymph protein concentration to increase; however, further increases in lymph pressure caused the lymph protein concentration to decrease to values approaching those attained at very low lymph pressures. We suggest that the failure of high lymph pressure to increase lymph protein concentration might be caused by blood vessel collapse within the node, a condition believed to increase nodal blood capillary pressure and to decrease blood-lymph barrier filtration coefficient. An important finding was that increasing efferent lymph pressure caused significant amounts of lymph proteins to be lost during nodal transit. Therefore, it appears that increasing efferent lymph pressure to very high values has little effect on lymph protein concentration but has great effect on postnodal lymph protein flux.

Keywords

Capillary Permeability, Dogs, Hydrostatic Pressure, Pressure, Animals, Proteins, Lymph, Lymph Nodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!