Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Regional gap junction inhibition increases defibrillation thresholds

Authors: J Jason, Sims; Kell L, Schoff; Jennifer M, Loeb; Nicholas A, Wiegert;

Regional gap junction inhibition increases defibrillation thresholds

Abstract

It is clear that ischemia inhibits successful defibrillation by altering regional electro-physiology. However, the exact mechanisms are unclear. This study investigated whether regional gap junction inhibition increases biphasic shock defibrillation thresholds (DFT). Sixteen swine were instrumented with a mid-left anterior descending (LAD) perfusion catheter for regional infusion of 0.5 mM/h heptanol ( n = 8) or saline ( n = 8). DFT values and effective refractory periods (ERP) at five myocardial sites were determined. Regional conduction velocity (CV) was determined in an LAD drug-perfused and nondrug-perfused region in an additional seven swine. Regional heptanol infusion increased 50% DFT values by 33% ( P = 0.01) and slowed CV by 42–59% ( P < 0.01) but did not affect ERP. Regional heptanol also increased CV dispersion by ∼270% ( P < 0.05) but did not change ERP dispersion. Regional placebo did not alter any of these parameters. Furthermore, regional heptanol infusion induced spontaneous ventricular fibrillation in eight of eight animals. Increasing spatial conduction velocity dispersion by impairing regional gap junction conductance increased DFT values. Dispersion in conduction velocity slowing during regional ischemia may be an important determinant of defibrillation efficacy.

Related Organizations
Keywords

Refractory Period, Electrophysiological, Swine, Cardiac Pacing, Artificial, Electric Countershock, Myocardial Ischemia, Neural Conduction, Gap Junctions, Connexins, Ventricular Function, Left, Electrophysiology, Electrocardiography, Kinetics, Ventricular Fibrillation, Animals, Heptanol

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!