Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of lipopolysaccharide and tumor necrosis factor-alpha in induction of hepatocyte necrosis

Authors: Henry Paul Redmond; Jiang Huai Wang; R. W. G. Watson; David Bouchier-Hayes;

Role of lipopolysaccharide and tumor necrosis factor-alpha in induction of hepatocyte necrosis

Abstract

The occurrence of acute hepatic failure during systemic inflammatory response syndrome (SIRS) is related to the extent of hepatocyte (HC) damage and cell death resulting from necrosis or apoptosis. We hypothesized that proinflammatory mediators such as lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) can, either directly or indirectly through neutrophil (PMN) and Kupffer cell (KC) activation, induce HC damage and cell death, and that the mechanism is cellular necrosis rather than apoptosis. The results in this study demonstrated that LPS and TNF-alpha alone and in combination are directly cytotoxic to cultured rat HC as indicated by the hepatocellular enzyme release and HC necrosis. However, LPS and TNF-alpha, in the presence of sodium arsenite (a heat shock inducer), were unable to induce HC apoptosis. Both KC and PMN activated by either LPS or TNF-alpha induced significant hepatocellular enzyme release and HC necrosis, which was dependent on the ratio of KC and PMN to HC. It is concluded that LPS and TNF-alpha may play a central role in the development of acute hepatic failure after severe trauma and sepsis by directly or indirectly inducing HC necrosis rather than apoptosis.

Keywords

Lipopolysaccharides, Male, Arsenites, Kupffer Cells, Neutrophils, Tumor Necrosis Factor-alpha, Apoptosis, Sodium Compounds, Rats, Rats, Sprague-Dawley, Drug Combinations, Necrosis, Liver, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!