Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Apical membrane permeability of MDCK cells

Authors: R L, Rivers; J A, McAteer; J L, Clendenon; B A, Connors; A P, Evan; J C, Williams;

Apical membrane permeability of MDCK cells

Abstract

The osmotic water permeability (Pf) and permeability to nonelectrolytes were determined for the apical membrane of clonal strain Madin-Darby canine kidney (MDCK) C12 cells cultured as cysts with the apical membrane facing the surrounding medium. Pf and solute permeabilities were calculated from the rate of volume change of cysts by digitizing images at 1-s intervals after instantaneous osmotic challenge. Image measurement was fully automated with the use of a program that separated the image of the cyst from the background by using adaptive intensity thresholding and shape analysis. Pf, calculated by curve fitting to the volume loss data, averaged 2.4 +/- 0.1 micron/s and was increased by addition of amphotericin B. The energy of activation for Pf was high (16.3 kcal/mol), and forskolin (50 microM) had no effect on Pf. Two populations of MDCK cysts were studied: those with two to three cells and those that appeared to be composed of only one cell. The Pf of multicell cysts was the same as single cell cysts, suggesting that paracellular water flow is not significant. Solute permeability was measured using paired osmotic challenges (sucrose and test solute) on the same cyst. Urea permeability was not different from zero, whereas the permeabilities of acetamide and formamide were consistent with their relative oil-water partition coefficients. Our data are similar to values from studies on the permeability properties of vesicles of water-tight epithelial apical membrane. The combination of the unique model of MDCK apical-out cysts and fully automated data analysis enabled determination of apical membrane permeability in intact epithelial cells with high precision.

Related Organizations
Keywords

Osmosis, Cell Membrane Permeability, Microscopy, Confocal, Colforsin, Osmolar Concentration, Water, Kidney, Models, Biological, Cell Line, Dogs, Amphotericin B, Spheroids, Cellular, Image Processing, Computer-Assisted, Microscopy, Electron, Scanning, Animals

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!