Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How RNA editing keeps an I on physiology

Authors: Marion Goldeck; Aiswarya Gopal; Michael F. Jantsch; Hamid Reza Mansouri Khosravi; Vinod Rajendra; Cornelia Vesely;

How RNA editing keeps an I on physiology

Abstract

Adenosine deaminases acting on RNAs convert adenosines (A) to inosines (I) in structured or double-stranded RNAs. In mammals, this process is widespread. In the human transcriptome, more than a million different sites have been identified that undergo an ADAR-mediated A-to-I exchange Inosines have an altered base pairing potential due to the missing amino group when compared to the original adenosine. Consequently, inosines prefer to base pair with cytosines but can also base pair with uracil or adenine. This altered base pairing potential not only affects protein decoding at the ribosome but also influences the folding of RNAs and the proteins that can associate with it. Consequently, an A to I exchange can also affect RNA processing and turnover (Nishikura K. Annu Rev Biochem 79: 321–349, 2010; Brümmer A, Yang Y, Chan TW, Xiao X. Nat Commun 8: 1255, 2017). All of these events will interfere with gene expression and therefore, can also affect cellular and organismic physiology. As double-stranded RNAs are a hallmark of viral pathogens RNA-editing not only affects RNA-processing, coding, and gene expression but also controls the antiviral response to double-stranded RNAs. Most interestingly, recent advances in our understanding of ADAR enzymes reveal multiple layers of regulation by which ADARs can control antiviral programs. In this review, we focus on the recoding of mRNAs where the altered translation products lead to physiological changes. We also address recent advances in our understanding of the multiple layers of antiviral responses and innate immune modulations mediated by ADAR1.

Related Organizations
Keywords

Mammals, Adenosine, RNA-Binding Proteins, Antiviral Agents, Inosine, Animals, Humans, RNA, Viral, RNA Editing, RNA, Double-Stranded

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?